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Abstract

It is well documented that kidney exchanges which match patiently are more efficient than

their greedy counterparts. However, in reality we still see several exchanges coexisting with

heterogeneous match frequencies. I suggest that a kidney market which matches infrequently

may unravel as fast exchanges “cream skim” the most desirable patients away from slower

exchanges, leading to a less efficient equilibrium.

1 Introduction

I study the problem of matching patients for paired kidney donation in a dynamic market with

two exchanges who differ only in their matching algorithm’s frequency. As documented in Agarwal

et al. (2019), the kidney exchange market is highly fragmented, with many hospital-level exchanges

operating significantly below critical capacity for running an efficient exchange. Moreover, despite

recent literature on the virtues of patient algorithms, there is not yet a consensus wait time for

periodic matching: the Alliance for Paired Donation matches daily, the United Network for Organ

Sharing matches weekly, the South Korean national exchange matches monthly, and the Dutch na-

tional exchange matches quarterly. This heterogeneity suggests our understanding of the dynamics

of when exchanges choose to run their match is still lacking.

As will be outlined in section 2, the consensus among economists is that waiting as long as

possible is the most efficient algorithm for maximizing matches. Why, then, do some exchanges

still run daily and weekly matches? I propose that in markets with waiting costs, patients who

are easier to match will prefer a “greedy” exchange to a more patient option. This prevents these

more efficient, slower exchanges from reaching critical mass, thereby reducing the total number

of matches achieved. Moreover, exchanges are incentivized to reduce their wait time, as this will

disproportionately draw in the most desirable patients.

To make this argument, I first compute a model for the utility a given patient receives from

an exchange when observing its size, match frequency, and average patient. Using this model, I
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construct a simulation where exchanges with fixed match frequencies compete over the course of a

year to attract and match patients. I find that single exchanges are more efficient in a vacuum than

two competing exchanges when generating matches. Moreover, in a market with two exchanges, fast

exchanges seem to be favored by individual myopic decision makers despite being socially inferior.

Finally, the patients who select into fast exchanges and are matched appear to be disproportionately

easy-to-match relative to those matched in either the corresponding slow exchange or the fast

exchange operating in a vacuum. As far as I am aware, this is the first paper to examine two

competing kidney markets with endogenous entry by patients.

2 Literature

This paper fits neatly in the literature on the economics of kidney exchange precipitated by Roth,

Sönmez, and Ünver (2004) as well as the follow-up paper Roth, Sönmez, et al. (2005). More

specifically, this paper closely mirrors the work regarding the optimal choice of matching algorithm

in a dynamic setting outlined in Akbarpour, Li, and Gharan (2020), which shows that “patient”

algorithms are significantly more effective in generating matches than “greedy” algorithms for ho-

mogeneous patients. In a similar vein, Monteiro et al. (2020) find that there exists a trade-off

between number of matches and average wait time, and that wait time can be rather substantially

reduced with only minor compromises in match efficiency.

Moreover, this paper follows in the tradition of Agarwal et al. (2019) regarding market failures

and adverse selection in the kidney exchange market. The authors highlight that while patients

benefit greatly from entering exchanges, hospitals do not internalize this benefit, and so do not

enroll some patients who would otherwise benefit. In addition, hospitals are not compensated

for submitting their most desirable patients, leading to adverse selection within kidney exchanges

and overall losses in efficiency. These two characteristics of the market lead to highly fragmented

kidney exchange programs run at the hospital level rather than the national level, damaging market

thickness and therefore overall efficiency.

As far as I am aware, the only other paper which examines algorithmic competition between

kidney markets is Das et al. (2015). In this paper, the economy is composed of two kidney exchanges,

one running a greedy algorithm and the other running a patient algorithm. Patients are assigned

exogenously to the greedy exchange, the patient exchange, or both. Under these constraints, the

economy is less efficient than even the greedy exchange in isolation, reflecting the outsize role of

thickness in market efficiency as well as the difficulty in maintaining patients in a slow market who

are also eligible for a greedy market. I hope to build on this paper by endogenizing the choice of

exchange in order to better cement our understanding of market competition.

This paper is also related to the work of Ashlagi, Tennenholtz, and Zohar (2010) examining

markets for server time which compete on batching algorithms. If there exist two compute platforms,
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each run by a selfish server administrator who attempts to maximize the amount of compute

time utilized on their cluster, the administrators compete on scheduling policy in order to force

customers onto their platform. Moreover, the two administrators’ policies must be in equilibrium

with each other. This can lead to inefficiencies, as rather than balancing the load across all available

resources, market administrators are incentivized to find ways to clog their own machine while their

competitor’s lies idle. The authors do, however, find the existence of equilibrium strategies among

both pure and randomized job scheduling algorithms. This problem is an interesting mirror of the

kidney exchange: in a duopoly problem, job scheduling is most efficient when divided but market

forces lead to excess concentration, while kidney markets are most efficient when concentrated and

appear to be excessively divided in the status quo.

Lastly, this paper contributes to the study of market unravelling. Niederle and Roth (2003)

discuss the unravelling of the Gastroenterology fellowship market, where hospitals pushed offer

dates earlier and earlier, to the point that fellows were accepting offers multiple years before their

anticipated graduation. Haruvy, Roth, and Ünver (2006) tells a similar story for judicial clerkships,

with the most promising students signing contracts in their second and third years of law school. I

believe the “cream skimming” story I outline in section 5 has significant precedent in these other

unravelling markets–much as the “best” students are pulled out of the pool early by eager employers,

the easiest to match patients are pulled out of the kidney match by greedy exchanges before slower

exchanges have a chance to match them at all, leading to an overall less efficient market.

3 Modelling

3.1 Defining the Economy

Let each kidney transplant patient i have some “match propensity” pi distributed over some distri-

bution F . The probability two patients i and j will match is the product of their match propensities,

pipj . A patient’s utility is defined based on whether they match, and how long a match takes. Nor-

malize a patient’s utility of matching this period to 1, and have them discount that utility by a

factor of 1− r every period they must wait.

Each patient enrolled in an exchange will become “critical” with probability λ each period.

Whether or not a patient is critical is visible to the market administrator. If a critical patient is

not matched at the end of that period, they will “expire” and be removed from the exchange.

3.2 The Utility of an Exchange

Per Akbarpour, Li, and Gharan (2020), waiting until a patient becomes critical to attempt to

match them is a significant improvement over matching them earlier. Therefore, under our model,

a critical patient will either match or expire in the following period, leaving the exchange. Further,
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a patient who is not critical will only leave the exchange if matched to a critical patient. If a patient

is not critical and does not match with a critical patient, they will re-enroll in the exchange the

following period.

Given the above, a patient with match propensity pi will have utility recursively defined as

follows:

Ui(λ) = P(match|pi) · 1 + P(¬match ∩ ¬critical|pi) · (1− r) · Ui(λ)

By isolating the utility term to the left hand side, I generate a closed-form function of the utility

of a given exchange:

Ui(λ) =
P(match|pi)

1− (1− r) · P(¬match ∩ ¬critical|pi)

In order to reduce this further to the bare parameters of our economy, I must now find both

the P(match|pi), the probability of matching in a given period, and P(¬match ∩ ¬critical|pi), the

probability of continuing to the next period. For the remainder of the calculations, “given pi” will

be omitted for concision; know all expressions are given an individual’s fixed pi.

3.3 The Probability of a Match

By partition, we know

P(match) = P(match ∩ ¬critical) + P(match ∩ critical)

Using Bayes’ Rule, this can be rewritten as

P(match) = P(match|¬critical) · P(¬critical) + P(match|critical) · P(critical)

Note that P(critical) is the parameter λ axiomatically defined as part of our economy. Thus,

the above can be further simplified to

P(match) = P(match|¬critical) · (1− λ) + P(match|critical) · λ

To continue, then, we must derive both P(match|¬critical) and P(match|critical).
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3.3.1 The Probability of Matching When Not Critical

P(match|¬critical) = P(chosen by someone critical)

= 1− P(chosen by no one critical)

= 1−
Nλ∏
j

P(¬chosen by a given critical patient)

= 1−
Nλ∏
j

(1− P(chosen by a given critical patient))

= 1−
Nλ∏
j

(1− P(chosen ∩ compatible))

= 1−
Nλ∏
j

(1− P(chosen|compatible)P(compatible))

As defined in our model, the probability i and j are compatible is simply pipj .

On the other hand, P(chosen|compatible) is a very difficult term to break down further, as it

would essentially require integrating over all possible graphs and their probabilities of occurrence.

Here, I will make a naive approximation: if each compatible patient is equally likely to be chosen,

the probability of any individual patient being chosen is one over the expected number of matches.

I believe this is a fair first-order approximation; a worthwhile step moving forward would likely be

to test this via simulation. For now, however, we will take it as acceptable.

If this is accepted, we must then find the expected number of compatible partners. Fortunately,

this is a significantly simpler question. Let Iij be an indicator variable for patients i and j being

compatible.

E(# of matches for j) = E

∑
i 6=j

Iij


=
∑
i6=j

E(Iij)

=
∑
i 6=j

P(i compatible with j)

=
∑
i 6=j

pipj
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Progressing with the proof from above:

P(match|¬critical) = 1−
Nλ∏
j

(1− P(chosen|compatible)P(compatible))

= 1−
Nλ∏
j

(
1− E(# of matches)−1pipj

)
= 1−

Nλ∏
j

(
1− pipj∑

k 6=j pjpk

)

= 1−
Nλ∏
j

(
1− pi∑N

k 6=j pk

)

= 1−
Nλ∏
j

(
1− pi

pi +
∑N
k 6=i,j pk

)

Note that as N , the size of the exchange, grows, the impact of any single patient’s match

propensity on the average match propensity of the pool approaches zero. For large enough N , then,∑N
k 6=i,j pk ≈ (N − 2)p̄, where p̄ is the average propensity of the pool. Using this approximation, we

can simplify the above further:

P(match|¬critical) = 1−
Nλ∏
j

(
1− pi

pi +
∑N
k 6=i,j pk

)

≈ 1−
Nλ∏
j

(
1− pi

pi + (N − 2)p̄

)
for large N

≈ 1−
(

1− pi
(N − 2)p̄+ pi

)Nλ
for large N

While a small approximation, this adjustment yields major computational benefits. For a given

pi, the unadjusted formula requires O(N2) computations: summing N − 1 terms in the denomi-

nator of the fraction, then multiplying all Nλ results. With this minor change, however, I have

transformed this O(N2) time complexity equation into one which is O(1), significantly reducing

computational burden down the line.
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3.3.2 The Probability of Matching When Critical

P(match|critical) = P(chosen by someone)

=1− P(chosen by no one)

=1−
N∏
j 6=i

P(¬chosen by a given patient)

=1−
N∏
j 6=i

(1− P(chosen by a given patient))

=1−
λN∏
j 6=i

(1− P(chosen by a critical patient))

∗
(1−λ)N∏
j 6=i

(1− P(chosen by a non-critical patient))

From the proof above, we already know that

λN∏
j 6=i

(1− P(chosen by a critical patient)) ≈
(

1− pi
(N − 2)p̄+ pi

)Nλ−1

Note here we must subtract one from the exponent; this is because the patient herself is critical,

and so is deducted from the critical patient pool.

However, we must still determine the value of
∏(1−λ)N
j 6=i (1−P(chosen by a non-critical patient)).
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(1−λ)N∏
j 6=i

(1− P(chosen by a non-critical patient)) =

(1−λ)N∏
j 6=i

(1− P(chosen ∩ compatible))

=

(1−λ)N∏
j 6=i

(1− P(chosen|compatible) · P(Compatible))

=

(1−λ)N∏
j 6=i

(
1− E(# of Matches)−1 · pipj

)
=

(1−λ)N∏
j 6=i

(
1− pipj∑Nλ

k 6=j pjpk

)

=

(1−λ)N∏
j 6=i

(
1− pi

pi +
∑Nλ−1
k 6=j pk

)

By an analogous limit argument to that outlined in section 3.3.1, I argue that for large enough N ,

any single patient will have minimal impact on the sum of match propensities in the denominator.

Moreover, as each patient becomes critical independently, we can expect that the average match

propensity among critical patients should be equal to the match propensity of the population,

allowing a substitution for p̄ and significant reduction in computational complexity.

(1−λ)N∏
j 6=i

(1− P(chosen by a non-critical patient)) =

(1−λ)N∏
j 6=i

(
1− pi

pi +
∑Nλ−1
k 6=j pk

)

≈
(1−λ)N∏
j 6=i

(
1− pi

pi + (Nλ− 1)p̄

)

≈
(

1− pi
(Nλ− 1)p̄+ pi

)N(1−λ)

Combining this with the above results, our final formula for the probability of matching when

critical is:

P(match|critical) ≈ 1−
(

1− pi
(N − 2)p̄+ pi

)Nλ−1(
1− pi

(Nλ− 1)p̄+ pi

)N(1−λ)
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3.3.3 Total Probability of a Match

Recalling again the formula from the beginning of the subsection, we know that

P(match) = (1− λ) · P(match|¬critical) + λ · P(match|critical)

With the above results, we have solved for both of the remaining unknown terms. Therefore, our

final formula for P(match) is:

P(match) ≈ (1−λ)·

(
1 −

(
1 − pi

(N − 2)p̄+ pi

)Nλ)
+λ·

(
1 −

(
1 − pi

(N − 2)p̄+ pi

)Nλ−1(
1 − pi

(Nλ− 1)p̄+ pi

)N(1−λ)
)

3.4 The Probability of Continuation

To compute the utility of an exchange, recall the denominator also contains the probability of

continuation, P(¬match ∩ ¬critical).

P(¬match ∩ ¬critical) = P(¬critical) · P(¬match|¬critical)

= (1− λ) · P(¬match|¬critical)

= (1− λ) · (1− P(match|¬critical))

Recall that I have already show P(match|¬critical) ≈ 1−
(

1− pi
pi+(N−2)p̄

)Nλ−1

in section 3.3.1.

Inserting this into the equation above, I show that

P(¬match ∩ ¬critical) ≈ (1− λ)

(
1− pi

pi + (N − 2)p̄

)Nλ−1

3.5 Tying it All Together

Recall our formula for the utility from an exchange as derived in 3.2:

Ui(λ) =
P(match)

1− (1− r) · P(¬match ∩ ¬critical)

Using the above results, I can substitute for both P(match) and P(¬match∩¬critical), yielding

my final formula for the utility of an exchange, dependant only on the parameters of the economy
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and the current state of the exchange:

Ui(λ) ≈
(1− λ) ·

(
1−

(
1− pi

(N−2)p̄+pi

)Nλ)
+ λ ·

(
1−

(
1− pi

(N−2)p̄+pi

)Nλ−1 (
1− pi

(Nλ−1)p̄+pi

)N(1−λ)
)

1− (1− r) · (1− λ) ·
(

1− pi
pi+(N−2)p̄

)Nλ−1

4 Simulation

4.1 Simulating a Single Exchange

I use the networkx package in Python to simulate running kidney exchanges over the course of a

year. The complete source code is available in a repository on my GitHub, https://github.com/

gmoore016/Competing_Kidney_Exchange.

In the simulation, when patient i enters an exchange, she is randomly linked to each existing

member j with probability pipj , where pi is patient i’s match propensity. These match propensities

are drawn on entry from a uniform distribution.

Each period, inflow patients enter the market one at a time. Then, each patient in the market

becomes critical with probability expiry rate. The exchange runs a match every freq periods. At

this point, I attempt to match as many critical patients as possible; any remaining critical patients

then expire.

To calculate the optimal matching, I use the networkx builtin method match weight matching.

Based on the blossom algorithm developed in Edmonds (1965), this method finds a matching which

maximizes the total edge weights within a graph. I therefore must transform the maximal node

weight matching problem into a maximal edge weight matching problem. Fortunately, this is

simple in the context of matching: each edge has weight equal to the number of critical patients

it is connected to. From there, I run the algorithm on the subgraph of edges with positive weight;

otherwise, the maximal matching may include edges with zero weight.

It is worth noting a single run of the algorithm is O(N3), where N is the number of patients in

the exchange at the time of the match. This match is run 360 / freq times over the course of the

simulation, yielding a total simulation complexity of O(N3freq−1) per run. In general, the N term

dominates, meaning that the simulations which run fewer matches take longer due to the increased

number of patients present in those matches.

Each parameterization is run ten times, in order to understand the underlying structure of the

results. The complete simulation results are available in appendix B.

In general, the exchange which waits the maximum quantity of time before matching is the most

effective, with the number of matches generally increasing in the length of the thickening period, as

visible in table 1. This aligns with expectations from Akbarpour, Li, and Gharan (2020); however,

while their results use homogeneous patients with equal match probabilities, here I have shown the
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result also holds empirically when patients are heterogeneous. However, the length of time waiting

in the exchange also increases linearly, visible in table 2. Thus, if there is some cost to waiting,

some patients may instead choose a fast but less effective exchange.

4.2 Simulating Dual Exchanges

The above simulation results largely confirm existing findings in the literature. However, the novel

utility formulation developed in section 3 allows for a more interesting breed of simulation: when

presented with two exchanges, which will a patient choose?

The simulation runs largely as in the single-exchange case above. However, after a patient is

assigned a match propensity, she is then offered the choice of two exchanges, and enrolls in the one

which will provide her greater expected utility.

When examining the standard deviations on the number of matches for each exchange as listed

in table 4, it is worth noting that there is significant dispersion around the number of matches

a given exchange can expect. This is because the distribution is largely bimodal–after an initial

competition phase, one exchange will gain critical mass while the other withers due to a lack of

new patients.

In general, it appears the fast exchange has a greater expected number of matches than the slow

exchange, suggesting it is more likely to dominate. Note that generally, the sum of the matches

in the two exchanges is less than the matches made under the same parameters in the single

exchange case; therefore, as suggested by Das et al. (2015), the two exchange case is less effective at

maximizing matches than either single exchange case. Across nearly all specifications, the average

match propensity in the fast exchange is significantly higher than in the slow exchange as visible in

table 6.

5 Discussion

I believe the above results are suggestive of a “cream skimming” phenomenon, where the most

easy-to-match patients place less emphasis on thickness than do those who are difficult to match,

and so are peeled away from the efficient slower exchange via competition from a faster exchange.

The first element that suggests this trend is visible in table 4: fast exchanges typically match

significantly more patients than competing slow exchanges. Given the single-exchange results from

table 1, we know that slower exchanges perform better in a vacuum; therefore, this advantage during

competition must stem from a disproportionate number of patients entering the fast exchange.

Further examination of table 6 can shed light on what draws patients to the fast exchange over

the slow exchange. Across most specifications, the patients matched in the fast exchange have

significantly higher match propensities than their slow-exchange counterparts. They also have a
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significantly higher match propensity than those from the single exchange case. This suggests that

high-propensity patients are selecting themselves into the exchange which matches more frequently.

Note that patients with high match propensity can provide a positive externality to an ex-

change: relative to a harder-to-match patient, high-propensity patients are more likely to match

with someone who is currently unmatched and about to expire. In this case, that expiring patient

is made significantly better off, as they are matched when they otherwise would not be. Moreover,

as high-propensity patients are likely to have many matches, it is rare they will “take” someone

else’s match when they become critical, as they are likely to have many partners available to them.

The above two results–that patients with high match propensities prefer exchanges which match

frequently and are also more desirable–suggest that in a market with two competing exchanges, the

faster exchange is likely to “cream skim” the slower exchange. This leaves the slow exchange with

only the least desirable patients, causing it to eventually collapse due to lack of critical mass.

Given Akbarpour, Li, and Gharan (2020) shows that a more patient matching algorithm generates

significantly more matches than a greedy alternative, this selection into the inefficient match could

have significant consequences in terms of total kidney exchanges performed.

Worth noting is that my simulation has patients choose a single exchange, while in reality

patients can enter multiple exchanges at once. I do not believe this changes my argument. Suppose

patients can enter a daily exchange, a monthly exchange, or both. In this case, any patients which

enter both have functionally entered the daily exchange, as by the time the monthly exchange runs

anybody who matches in the daily exchange will already be removed from the pool, again leaving

the monthly exchange with only the most difficult-to-match patients.

I also wish to highlight a special case: when a patient is compatible with their donor and does

not have to enter an exchange at all. This situation is analogous to a patient deciding between a

very large but somewhat slow exchange and a fast exchange where they are guaranteed to match.

According to National Kidney Foundation (2016), 5,537 kidneys were provided by living donors

in 2014. Per Agarwal et al. (2019), kidney exchanges facilitate approximately 800 operations each

year. This means that more than 80% of living kidney transplants do not pass through an exchange.

Consider that many of those self-matching pairs could have matched with and saved a patient who

instead went unmatched, especially given that the patients who are compatible with their donor

are also likely highly-compatible. A mechanism which corrects the distortions outlined in this

paper could not only boost matches among patients who already entered kidney exchange, but also

induce people to enter kidney exchanges who would not otherwise do so, significantly expanding

the universe of potential matches.
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6 Next Steps

6.1 Derivatives of Utility

Recall the equation for total utility of an exchange derived in section 3.5. At some level, the

fundamental questions this paper pursues boil down to questions about the derivatives of this

utility function. The equation is far too complex to be reasonably differentiated by hand; however,

using symbolic algebra, mathematical computing languages such as Mathematica and MATLAB

can make analytic differentiation straightforward. MATLAB output of ∂U
∂N and ∂2U

∂N∂p are visible in

appendix A.∗

6.1.1 The Derivative in N

I will admit to having a somewhat strong prior on the derivative of N–if thickness is desirable for

all patients, we would expect this to be positive at all points. However, as it stands the formulation

of the derivative returned by MATLAB is of ambiguous sign. This is because

substitution #1 = λ log

(
1− p

p̄(N − 1)

)
·
(

1− p

p̄(N − 1)

)Nλ−1

+
p ·
(

1− p
p̄(N−1)

)Nλ−2

(Nλ− 1)

p̄(N − 1)2

Note that the first term of the above equation is negative due to taking the log of a number

between 0 and 1, while the second term is positive, as it is the product of exclusively positive

numbers. This is then divided by a positive number and added to the rest of the terms in the

equation. Thus, if this term is significantly positive or negative, it could pull the entire derivative

up or down. One further avenue of exploration would be to examine under what conditions the

above equation is positive or negative, and see if there exist reasonable bounds under which it is

always positive.

Note, I believe the remaining terms in the formula for ∂U
∂N are positive. Therefore, if I am

able to prove that substitution #1 is positive under some bounds, the whole derivative should be

unambiguously positive under those same bounds.

6.1.2 The Derivative in N and pi

One claim of my argument is that “easy to match” patients gain less from thickness than those who

are “hard to match,” leading them to be more willing to defect from a slow match. It is reasonable

to frame this as an argument about the second derivative: ∂2U
∂N∂pi

could be negative, which would

mean that as pi increases the gains from thickness decline.

∗Many thanks to Derek Gaines for MATLAB assistance.
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As is visible in A.2, the second partial derivative of Ui is quite complex, involving many terms

and a full eighteen substitutions from MATLAB output. I am optimistic, however, that if I can

place conditions as described above to reign in the first derivative, it could also make the second

derivative tractable.

6.2 Simulate with Machine Learning

Rather than bothering with the utility calculations from section 3, another avenue could be to

use machine learning to train using the simulator from section 4. Given it is simple to calculate

a patient’s utility ex-post, we have a clear feedback function with which to train our algorithm.

Moreover, the set of parameters–λ, pi, and r, as well as an N and p̄ for each exchange–is bounded

enough to hopefully keep the problem tractable.

This has some significant benefits–it allows us to forego our current large sample approximations,

as well as the estimate of the probability of matching given compatibility. However, it would likely

require significant computation time. Moreover, it may be difficult to interpret “optimal” play in a

way that is reasonable to humans, potentially leaving us with an answer but no rationale.

7 Conclusion

The above evidence suggests that when faced with competition, slow exchanges are liable to un-

ravel despite their efficiency gains. Hopefully this goes at least some way toward explaining the

fragmented, heterogeneous kidney exchanges we see in reality. However, having identified the prob-

lem, I am far from providing a solution. Fundamentally, easy-to-match patients provide a positive

externality which they must be compensated for lest they defect. Given this problem, there are two

options: subsidize easy-to-match patients or prevent defection. Beyond general objections towards

paying people for organs, subsidizing high-propensity patients has problematic distributional conse-

quences: a patient who is simple to match is both likely to match quickly and gains a subsidy, while

a hard to match patient is liable to get nothing. An alternative solution would be to nationalize

kidney exchange, and require kidney transplants to register with the national registry. However,

many would likely feel this solution involves significant government overreach, and may vitalize a

black market for kidney exchanges.
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A.1 Derivative in N
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A.2 Derivative in N and pi
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Table 1: The number of matches given a single exchange under the specified parameters. Standard
deviation of sample (not of sample mean) is in parentheses below.

Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————– ——————– ——————- ——————– ——————-
3.00 918.60 980.80 946.40 1012.20 1020.80
(SD) (7.12) (8.39) (6.79) (4.76) (3.55)
10.00 3335.80 3369.80 3191.80 3381.00 3410.40
(SD) (13.18) (11.87) (7.45) (7.01) (7.59)
25.00 8471.60 8484.80 8007.60 8469.00 8519.20
(SD) (13.29) (6.55) (9.56) (12.87) (6.41)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————– ——————– ——————- ——————– ——————–
3.00 632.80 940.00 965.80 1033.60 1046.40
(SD) (18.02) (15.32) (3.33) (3.24) (2.07)
10.00 3043.20 3395.60 3270.80 3463.40 3488.80
(SD) (26.20) (11.65) (4.24) (5.34) (2.70)
25.00 8342.00 8634.20 8205.60 8671.00 8725.00
(SD) (22.35) (8.19) (5.15) (3.80) (5.68)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————– ——————– ——————- ——————– ——————–
3.00 422.40 908.80 961.80 1034.80 1047.40
(SD) (19.11) (12.76) (3.33) (2.35) (1.90)
10.00 2615.80 3390.40 3277.40 3471.80 3497.40
(SD) (48.15) (10.74) (4.99) (2.39) (2.50)
25.00 8036.20 8648.00 8221.00 8689.80 8744.80
(SD) (25.88) (9.04) (4.35) (3.05) (2.53)
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Table 2: The average age of a matched patient given a single exchange under the specified param-
eters. Standard deviation of sample (not of sample mean) is in parentheses below.

Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————- - —————— – —————— - ——————- - ——————
3.00 5.02 10.30 22.63 50.71 178.75
(SD) (5.67) (8.08) (12.24) (26.19) (98.74)
10.00 6.09 11.39 23.01 50.77 178.79
(SD) (6.30) (8.93) (12.42) (26.13) (98.70)
25.00 7.57 11.64 22.94 50.81 178.93
(SD) (7.71) (9.21) (12.52) (26.13) (98.63)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————– ——————– ——————- ——————- - ——————-
3.00 0.61 3.71 15.30 43.68 174.81
(SD) (0.98) (2.37) (8.73) (25.09) (100.87)
10.00 0.63 3.90 15.42 43.78 174.94
(SD) (0.97) (2.40) (8.74) (25.09) (100.76)
25.00 0.84 3.95 15.42 43.84 174.96
(SD) (1.18) (2.41) (8.73) (25.08) (100.77)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————– ——————– ——————- ——————– ——————–
3.00 0.08 3.02 14.51 42.98 174.56
(SD) (0.28) (2.03) (8.66) (25.11) (101.03)
10.00 0.06 3.07 14.58 43.06 174.56
(SD) (0.25) (2.02) (8.66) (25.11) (101.00)
25.00 0.08 3.09 14.59 43.08 174.56
(SD) (0.28) (2.02) (8.66) (25.11) (101.01)
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Table 3: The average match propensity of a matched patient given a single exchange under the
specified parameters. Standard deviation of sample (not of sample mean) is in parentheses below.

Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————– ——————— ——————– —————— ——————-
3.00 0.55 0.52 0.51 0.51 0.51
(SD) (0.27) (0.28) (0.28) (0.29) (0.29)
10.00 0.51 0.51 0.50 0.50 0.50
(SD) (0.28) (0.29) (0.29) (0.29) (0.29)
25.00 0.50 0.50 0.50 0.50 0.50
(SD) (0.29) (0.29) (0.29) (0.29) (0.29)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————— ——————— ——————- ——————– ————————
3.00 0.61 0.54 0.51 0.50 0.51
(SD) (0.25) (0.27) (0.28) (0.29) (0.29)
10.00 0.55 0.51 0.50 0.50 0.50
(SD) (0.26) (0.28) (0.29) (0.29) (0.29)
25.00 0.52 0.51 0.50 0.50 0.50
(SD) (0.29) (0.29) (0.29) (0.29) (0.29)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00 350.00
—————— ——————— ——————– ——————– ——————– ———————-
3.00 0.65 0.55 0.52 0.51 0.50
(SD) (0.24) (0.27) (0.28) (0.29) (0.29)
10.00 0.59 0.51 0.50 0.50 0.50
(SD) (0.25) (0.28) (0.29) (0.29) (0.29)
25.00 0.54 0.50 0.50 0.50 0.50
(SD) (0.27) (0.29) (0.29) (0.29) (0.29)
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Table 4: The average number of matches given competing fast and slow exchanges under the
specified parameters.

Fast Exchange:
Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————– ——————- ——————-
10.00 1567.20 2241.20 3570.20 3363.40
(SD) (354.15) (260.90) (81.67) (87.14)
25.00 3693.00 5977.00 9246.40 8499.00
(SD) (1303.51) (612.93) (342.43) (864.69)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————– ——————– ——————–
10.00 1740.00 2772.60 482.20 1141.20
(SD) (1489.81) (932.19) (912.10) (1261.66)
25.00 3401.80 5917.40 1924.00 680.60
(SD) (4024.95) (3866.65) (3385.59) (597.17)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————– ——————- ——————–
10.00 2679.20 2584.60 2301.40 1134.00
(SD) (35.46) (100.27) (247.69) (949.89)
25.00 7999.20 6877.80 4108.60 2534.60
(SD) (56.29) (889.44) (2569.87) (2638.92)

Slow Exchange:
Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————- ——————– ——————–
10.00 1722.40 1113.60 62.40 69.40
(SD) (351.65) (257.34) (26.04) (66.28)
25.00 4760.00 2524.40 158.20 240.80
(SD) (1294.84) (611.78) (59.51) (375.21)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————– ——————- ——————–
10.00 1395.40 401.40 2840.80 2261.20
(SD) (1494.88) (1033.44) (987.10) (1441.57)
25.00 5013.80 2603.80 6395.20 8056.60
(SD) (4030.59) (4002.27) (3312.60) (625.81)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————- ——————– ——————– ——————–
10.00 57.00 168.20 530.60 2109.40
(SD) (7.13) (105.50) (319.67) (1241.08)
25.00 114.40 1339.20 4247.60 6062.40
(SD) (50.20) (964.77) (2634.34) (2839.18)
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Table 5: The average age of a matched patient given competing fast and slow exchanges under the
specified parameters.

Fast Exchange:
Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————- ——————- ——————– ——————-
10.00 5.77 5.47 6.38 6.17
(SD) (6.13) (5.82) (6.63) (6.41)
25.00 7.03 6.37 7.78 7.80
(SD) (7.14) (6.86) (7.94) (7.95)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————– ——————– ——————–
10.00 0.64 0.64 0.63 0.61
(SD) (0.98) (0.98) (0.97) (0.95)
25.00 0.82 0.84 0.83 0.75
(SD) (1.17) (1.18) (1.18) (1.11)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————— ——————- – —————— — ———————
10.00 0.06 0.06 0.06 0.06
(SD) (0.25) (0.25) (0.25) (0.26)
25.00 0.08 0.07 0.08 0.08
(SD) (0.29) (0.27) (0.28) (0.29)

Slow Exchange:
Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————- ——————- ——————-
10.00 5.40 10.67 29.12 77.16
(SD) (5.77) (7.98) (6.99) (21.09)
25.00 6.15 11.59 27.59 58.26
(SD) (6.64) (8.74) (8.52) (28.76)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————– ——————– ——————- ——————–
10.00 0.64 4.18 15.44 43.07
(SD) (0.97) (2.34) (8.88) (25.68)
25.00 0.84 4.01 15.47 43.19
(SD) (1.18) (2.42) (8.82) (25.09)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————— ——————- - ——————- ——————–
10.00 0.07 3.74 15.31 43.65
(SD) (0.28) (2.24) (9.08) (25.44)
25.00 0.07 3.15 14.57 42.97
(SD) (0.27) (2.07) (8.68) (25.08)
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Table 6: The average match propensity of a matched patient given competing fast and slow ex-
changes under the specified parameters.

Fast Probs:
Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————— ——————- – —————— — ———————
10.00 0.57 0.50 0.52 0.52
(SD) (0.27) (0.26) (0.28) (0.28)
25.00 0.61 0.43 0.51 0.51
(SD) (0.28) (0.26) (0.28) (0.28)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————- ——————— ——————– - ——————–
10.00 0.55 0.55 0.56 0.56
(SD) (0.27) (0.27) (0.27) (0.26)
25.00 0.52 0.52 0.53 0.60
(SD) (0.28) (0.28) (0.28) (0.28)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————— ——————- – —————— — ———————
10.00 0.59 0.59 0.59 0.58
(SD) (0.26) (0.26) (0.26) (0.26)
25.00 0.54 0.54 0.54 0.54
(SD) (0.27) (0.27) (0.27) (0.27)

Slow Probs:
Expiry rate==0.1

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————— ——————- - ——————- – ———————
10.00 0.50 0.58 0.59 0.44
(SD) (0.27) (0.29) (0.30) (0.30)
25.00 0.44 0.70 0.71 0.28
(SD) (0.26) (0.26) (0.29) (0.32)

Expiry rate==0.5

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————— ——————- - ——————- - ———————
10.00 0.56 0.51 0.50 0.50
(SD) (0.26) (0.28) (0.29) (0.29)
25.00 0.52 0.50 0.50 0.49
(SD) (0.28) (0.29) (0.29) (0.29)

Expiry rate==0.9

Inflow\Frequency 1.00 7.00 30.00 87.00
—————— ——————— ——————- – —————— — ———————
10.00 0.51 0.52 0.50 0.50
(SD) (0.28) (0.29) (0.28) (0.29)
25.00 0.52 0.50 0.50 0.50
(SD) (0.28) (0.28) (0.29) (0.29)
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